
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Complexity Analysis between Bruteforcing and Blind

SQL Injection with LIKE-Based Data Exfiltration

Muhammad Jibril Ibrahim - 135230851

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1mjibrahimcollege@gmail.com, 13523085@std.stei.itb.ac.id

Abstract—The continuous evolution of cyber threats

underscores the critical need to understand the methods employed

to compromise password security. This paper investigates and

compares two prevalent techniques: brute-forcing and SQL

injection with LIKE-based exfiltration. Brute-forcing involves an

exhaustive search through all possible password combinations,

making it computationally intensive, particularly for robust

hashing algorithms. Conversely, SQL injection leverages

vulnerabilities in database systems to retrieve sensitive data

efficiently, with LIKE-based patterns enabling partial password

recovery through targeted queries. By analyzing the algorithmic

complexity, hash dependencies, and practical effectiveness of these

methods, this study highlights their relative computational

demands and implications for system security. The findings aim to

inform the development of more resilient security mechanisms and

best practices in safeguarding credentials against these attacks.

Keywords—Algorithm Complexity, Bruteforcing, SQL, SQL

Injection, Password cracking

I. INTRODUCTION

Data exfiltration is a critical concern in cybersecurity,

especially when dealing with poorly secured applications

vulnerable to attacks like brute force or SQL injection. Two

common approaches to extracting sensitive information, such as

password hashes, are brute forcing and blind SQL injection with

LIKE-based exfiltration. This paper examines the complexity of

these methods, focusing on their computational and algorithmic

characteristics.

Brute forcing relies on systematically trying all possible

combinations until the correct one is found, making it a

straightforward but often resource-intensive technique. On the

other hand, blind SQL injection with LIKE-based exfiltration

involves querying a database in a manner that reveals data bit by

bit or character by character, leveraging feedback from the

application to refine guesses. This method is slower but more

covert, often evading basic security measures.

The context for this exploration is inspired by a Capture the

Flag (CTF) challenge where participants were tasked with

extracting a password hash to gain administrative access.

Understanding the underlying complexities of these approaches

is essential not only for CTF enthusiasts but also for

professionals seeking to secure applications against such

attacks.

This paper explores the algorithmic complexity of brute-

forcing and SQL injection with LIKE-based exfiltration,

focusing on their application to password cracking. By

examining the computational requirements and practical

implications of each method, we aim to provide a nuanced

understanding of their relative strengths, weaknesses, and

impact on modern cybersecurity practices.

II. FUNDAMENTAL THEOREM

A. Combinatorics

Combinatorics is a branch of mathematics concerned with

counting the arrangements of objects without the need to

enumerate all possible configurations explicitly. In

combinatorics, it is essential to calculate all possible

arrangements of objects. Two fundamental principles often

applied as calculation methods in combinatorics are the rule of

product and the rule of sum.

 Rule of Product

If two independent experiments are performed, where

the first experiment results in 𝑝 possible outcomes and

the second experiment results in 𝑞 possible outcomes,

then performing both experiments will yield 𝑝 ∗ 𝑞

possible outcomes.

 Rule of Sum

If two independent experiments are performed, where

the first experiment results in 𝑝 possible outcomes and

the second experiment results in 𝑞 possible outcomes,

then performing either the first or the second

experiment will yield 𝑝 + 𝑞 possible outcomes.

Two key concepts in combinatorics are permutation and

combination. These concepts help determine the number of

ways to select or arrange objects under specific constraints.

 Permutation

A permutation of 𝑟 objects chosen from 𝑛 elements,

denoted as 𝑃(𝑛, 𝑟), refers to the number of possible

arrangements of 𝑟 objects selected from 𝑛, where 𝑟 ≤
𝑛 and no object is repeated in any arrangement.

Permutations are used when the order or position of

objects is significant. The formula of permutation is

as follows:

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛 − 𝑟)!

 Combination

A combination of 𝑟 objects chosen from 𝑛 elements,

denoted as 𝐶(𝑛, 𝑟), refers to the number of ways to

select 𝑟 objects from 𝑛 elements without regard to the

order of selection. Combinations are used when the

mailto:1mjibrahimcollege@gmail.com
mailto:13523085@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

order or position of objects is not important. The

formula of combination is as follows:

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!

B. Algorithm Complexity

In programming, developing algorithms that are both accurate

and efficient is of utmost importance. The efficiency of an

algorithm is measured based on the time and space it consumes

during execution. An efficient algorithm is one that minimizes

both time and memory usage. These measurements are

collectively referred to as an algorithm's complexity, which

provides insight into how well the algorithm performs under

various conditions.

Algorithmic complexity is categorized into two main types:

time complexity and space complexity. Time complexity

measures the number of computational steps required as a

function of the input size (𝑛). It focuses on how the execution

time of an algorithm scales with the size of its input. In contrast,

space complexity assesses the amount of memory required for

an algorithm to run, including memory for variables, data

structures, and function calls.

Often, exact details about time complexity are less critical

than understanding how an algorithm's runtime grows with

increasing input size. This growth is represented using Big-O

notation, a mathematical notation that describes the upper bound

of an algorithm's computational complexity. Big-O notation

provides an asymptotic analysis, focusing on the term with the

highest order of growth. For example, an algorithm with a time

complexity of 𝑂(𝑓(𝑛)) indicates that 𝑓(𝑛) represents the

dominant term governing its performance as the input size

increases.

Image 2.1 Big-O complexity chart

(Source: https://www.bigocheatsheet.com/)

Although one may not see or feel the difference of complexity

with a small number of input 𝑛. When using a huge amount of

input, the difference becomes strikingly clear. For example, an

input amount of 109 when computed with an algorithm of

complexity 𝑂(𝑛) and assuming a single operation takes about 1

ns or 10−9 second then the algorithm will only take 1 seconds.

While an algorithm of complexity 𝑂(𝑛 log2 𝑛), when given the

same amount of input, would take nearly 30 seconds. That is 30

times longer than the previous algorithm.

C. Hash

Hashing is a fundamental concept in computer science and

cryptography, defined as the process of mapping data of

arbitrary size to a fixed-size value using a mathematical function

known as a hash function. The output of this process, often

referred to as a hash value, digest, or checksum, serves as a

unique representation of the input data.

The primary purpose of hashing is to facilitate efficient data

retrieval, comparison, and integrity verification. Hashing is

extensively employed in various applications, including

database indexing, cryptographic protocols, digital signatures,

and password storage.

According to Rogaway and Shrimpton in their work on

cryptographic hash functions, an effective hash function exhibits

the following 3 essential properties, Preimage Resistance,

Second-Preimage Resistance, and Collision Resistance.

Preimage Resistance means it should be computationally

infeasible to reverse-engineer the input data (preimage) from its

hash value. This property ensures the security of sensitive

information that is hashed, such as passwords.

Second-Preimage Resistance means that given a hash value

and its corresponding input, it should be infeasible to find a

different input that produces the same hash value. This property

prevents malicious tampering of data to create identical hash

outputs.

Collision Resistance means it should be infeasible to find two

distinct inputs that produce the same hash value. This property

is crucial for ensuring the uniqueness of hash values, particularly

in digital signatures and integrity verification.

As mentioned before, one application of hashing is password

storage. In today’s data-driven world, a secure and feasible

hashing function is not just an option, it is a necessity. One such

hashing function that is used for password storage is Bcrypt, a

hash based on the Blowfish cipher.

D. Brute Force

A brute-force algorithm is a fundamental computational

approach that systematically enumerates all possible solutions

to a problem to identify the correct one. This method does not

rely on advanced strategies but instead exhaustively tests each

potential solution. The algorithm guarantees that if a solution

exists, it will eventually find it, given enough time and

resources.

However, brute-force algorithms are highly inefficient for

large problem spaces due to their exhaustive nature. As the size

of the problem grows, the number of possible combinations

increases exponentially, making the algorithm increasingly slow

and resource-intensive. Despite this inefficiency, brute-force

algorithms are simple to implement and can be relied upon when

no better optimization techniques are available.

In practical applications, brute-force attacks are commonly

used in cybersecurity for password cracking, where an attacker

attempts every possible password until the correct one is found.

This guarantees success, but the process can be extremely time-

consuming, especially for long or complex passwords.

https://www.bigocheatsheet.com/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

E. SQL Injection

An SQL injection attack involves embedding or "injecting"

malicious SQL queries into input fields provided by a client

application. This attack allows unauthorized commands to be

executed on the backend database. If successful, SQL injection

exploits can lead to the extraction of sensitive information,

unauthorized data manipulation (insert, update, delete),

administrative operations on the database (e.g., shutting down

the database management system), and even file retrieval from

the DBMS file system. In certain cases, attackers may execute

operating system commands via the database. As a subset of

injection attacks, SQL injection specifically targets the

execution of unintended SQL commands by manipulating input

data.

The root cause of SQL injection vulnerabilities simple and

well-known, insufficient validation of user inputs. Developers

have proposed numerous coding guidelines to address this issue,

emphasizing defensive programming practices, such as proper

input encoding and rigorous input validation. While these

techniques are effective when applied systematically, they rely

heavily on human effort, making them prone to errors.

Addressing SQL injection vulnerabilities in legacy codebases is

particularly challenging, as it requires significant manual effort

to review and fix potentially insecure code. As a result,

preventing SQL injection vulnerabilities demands a

combination of rigorous coding standards, automated tools for

input validation, and regular security audits.

Consider a web application with a login form that accepts a

username and password. The application then executes the

following SQL query to authenticate the user:

SELECT * FROM users WHERE username =

'$username' AND password = '$password';

In a vulnerable application, that is, if the application does not

properly validate user input, an attacker could exploit this by

entering the following values into the username and password

fields:

 Username: Admin

 Password: ' OR '1'='1

Given this input, The resulting query to the database would

be:

SELECT * FROM users WHERE username =

'Admin' AND password = '' OR '1'='1';

Because of the OR '1'='1' part, the password filter would

always equal to TRUE and would log you in as the admin. This

is of course a major security vulnerability. Where its not just

limited to logging in as another user, It could lead data

manipulation and extraction.

F. Blind SQL Injection

Blind SQL injection is a subtype of SQL injection where an

attacker exploits a vulnerability without directly observing the

database's response. Unlike traditional SQL injection, where

error messages or query results are visible, blind SQL injection

relies on indirect clues, such as variations in page behavior or

response times, to infer information about the database.

There are 2 types of Blind SQL Injection, Boolean-based and

Time-based. In Boolean-Based Blind SQL Injection, attackers

inject SQL queries that return either a true or false result,

causing changes in the application's behavior based on the

query's outcome. By analyzing these behavioral differences,

attackers can infer details about the database structure or its

contents. On the other hand, Time-Based Blind SQL Injection

involves injecting SQL commands that intentionally cause

delays with function such as SLEEP. By observing the response

time, attackers can determine whether specific conditions hold

true, enabling them to systematically extract data.

III. ANALYSIS

A. Basic Premise

The problem stated here will be the premise to be solved by

the algorithm method, brute forcing and like-based SQL

Injection. The premise is as follows:

Given a software application with a login system that connects

to a database. The app saves the password data in the database

after hashing it with Bcrypt hash. The hash has a length of 60

characters that consist of alphanumeric letters, uppercase and

lowercase, and 3 special characters ($, . , /). The goal of this

premise is to exfiltrate the password hash of the admin. The

correctness of the inputted answer can be tested by the SQL

query for the login function. The normal SQL login query is as

such,
SELECT * FROM users WHERE username =

'$username' AND password = '$password';

Where it checks if the user exist and has the correct

password.

B. Brute force

The brute force method is by simply trying every possible

combination of the password hash. Given the hash has a length

of 60 characters and consist of alphanumeric letters and 3 special

character, on a single character of the hash it will have 65

possible characters.

Remember that the goal is to exfiltrate the password hash.

Logging in will merely be our Boolean-based Blind SQL

Injection which would check if our input is correct or not. The

SQL Injection for this method is as follows:

 Username: admin’ AND pwhash =

‘<Input>’--

 Password: random

On a correct inputted hash, we would then be logged in. while

if our inputted is incorrect, we would not be logged in. the

password can be anything because in the Username input we

give “--“ which means to ignore the command after the symbol

so it will ignore the password input. This is the basis of the SQL

Injection. We now just need to calculate the complexity.

Using combinatorics rule of product, we can find the amount

of all possible combinations of the password hash. With 65

possible character with 60 character length, we can calculate that

the amount of possible combination is 6560 ≈ 8 ∗ 10107. This

is a huge number. If someone really try to brute force this, with

a computer that can calculate a single operation in 1 ns. It would

take them about 8 ∗ 1098 seconds. To put in perspective, the age

of the universe is estimated to be 4.3 ∗ 1017 seconds.

This shows that Bruteforcing on big numbers is unfeasible and

practically impossible with our current computational

technology. Giving it another perspective, it means that our

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

security system is secure enough as long as it is implemented

correctly

C. LIKE-Based SQL Injection

The LIKE command in SQL is used to perform pattern

matching within string data. It is commonly used in WHERE

clauses to filter rows based on whether a column’s value

matches a specified pattern. This pattern matching supports

wildcard characters to define patterns.

One such wildcard character is “%” which is essential for this

method. This wildcard matches for zero or more characters.

For example, querying with “name LIKE ‘A%’ ” would

match for “Anna”, “Andrew”, “Agus”, and so on.

As is in the brute forcing method, Logging in will merely be

our Boolean-based Blind SQL Injection which would check if

our input is correct or not. The SQL Injection for this method is

as follows:

 Username: admin’ AND pwhash LIKE

‘<Input>%’--

 Password: random

Unlike in the brute forcing method, we would be logged in

not just when our input is fully correct but also if our input

matches the first part of the password hash. In another words,

we would be logged in if the password hash starts with our input.

This is much, much more efficient than the brute forcing

method as we can iteratively check the correctness of our

inputted characters. We can use combinatorics to calculate the

number of possible combinations. But unlike in the brute forcing

method, we can use the rule of sum as now every character is

independent of each other. With 65 possible character with 60

character length, we can calculate that the amount of possible

combination is 65 ∗ 60 = 3900 amount of possible

combination. This is an astronomical decrease from the brute

force method. What would have taken more than the age of the

universe can be shorten into as little as 3.9 micro seconds.

IV. IMPLEMENTATION

A. Brute force

The Brute force code try for every combination of the 6560

possible combination. It would mean that it consist of 60 nested

for-loops with each loops is a for-loop with the length of 65. I

skipped the implementation of the brute force method as it is not

feasible both in theory and practically.

B. LIKE-Based SQL Injection

We first create the list that contains all 65 possible characters

that might appear in the hash, including 3 special characters (:, .

, /.), digits (0-9), and both lowercase and uppercase letters (a-z,

A-Z). The script starts with an empty known_hash string and

iteratively builds it one character at a time. At each step, it

appends a candidate character to the known portion of the hash

and uses a wildcard (%) to account for the unknown remaining

characters.

The injection is crafted within the username parameter of the

login payload. The SQL query checks if the hashed password

(pwhash) in the database starts with the guessed hash

(cur_hash).

We continue this injection with the guessed cur_hash

character by character until we have all 60 characters of the

password hash. We have successfully exfiltrate the password

hash data in an efficient and quick method.

V. CONCLUSION

This analysis highlights the stark contrast between brute

forcing and LIKE-based SQL injection in terms of efficiency

and feasibility for extracting password hashes. Brute forcing,

while conceptually straightforward, is computationally

impractical for modern hashing algorithms like Bcrypt. The

exponential growth of possible combinations, combined with

the immense computational time required, renders brute-force

attacks infeasible, underscoring the robustness of secure hashing

practices when implemented correctly.

In contrast, LIKE-based SQL injection demonstrates the

power of leveraging database query capabilities for efficient

data exfiltration. By iteratively testing each character of the hash

and using the database's response as feedback, this method

drastically reduces the number of required operations. The shift

from exponential to linear complexity makes this approach not

only feasible but also highly effective in practice.

The study of these techniques highlights the importance of

robust input validation, parameterized queries, and other secure

coding practices to mitigate vulnerabilities. While brute forcing

relies on sheer computational power, LIKE-based SQL injection

exploits logical weaknesses in application design. Together,

they emphasize the necessity of a multifaceted approach to

security, combining strong cryptographic measures with

rigorous application-level protections.

By understanding the relative strengths and weaknesses of

these approaches, developers and security professionals can

better defend against attacks while appreciating the

computational challenges faced by attackers. This underscores

the ongoing importance of both cryptographic advancements

and secure software design in safeguarding sensitive

information.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

VI. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to God Almighty,

Allah Subhanahu wa Ta’ala, for His blessings and guidance,

enabling the completion of this paper titled “Complexity

Analysis between Bruteforcing and SQL Injection with LIKE-

Based Exfiltration on Password Cracking” in a timely manner.

The author extends sincere appreciation to their parents and

friends for their unwavering support and encouragement,

particularly in providing mental motivation throughout the

writing process. Special thanks go to Dr. Rinaldi Munir, the

lecturer for Discrete Mathematics K1 in the 2024/2025

academic year, for sharing valuable knowledge and providing

guidance during the learning process. The author is also deeply

grateful to Dr. Rila Mandala, one of the lecturers for the same

course, for delivering extensive materials and references that

were instrumental both during the lectures and in the preparation

of this paper. Lastly, the author would like to thank all other

individuals and parties who contributed to the completion of this

paper.

REFERENCES

[1] G. O. Phillip Rogaway and Thomas Shrimpton. "Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for Preimage

Resistance, Second-Preimage Resistance, and Collision Resistance." Fast

Software Encryption, Lecture Notes in Computer Science, vol. 3017, pp.
371–388, Springer, 2004.

[2] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.
[3] P. G. J. Halfond, J. Viegas, and A. Orso, "A classification of SQL-injection

attacks and countermeasures," in Proceedings of the IEEE International

Symposium on Secure Software Engineering (ISSSE), Arlington, VA,
USA, Mar. 2006, pp. 13–15.

[4] OWASP. (20225, January 7). SQL Injection. https://owasp.org/www-

community/attacks/SQL_Injection
[5] Portswigger. (20225, January 7). Blind SQL Injection.

https://portswigger.net/web-security/sql-injection/blind

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Muhammad Jibril Ibrahim

13523085

